
Using Mochi to Build Data Services

Philip Carns (Argonne National Laboratory)

Matthieu Dorier (Argonne National Laboratory)

Rob Ross (Argonne National Laboratory)

Jerome Soumagne (The HDF Group)

April 13, 2021

2

Whatôs changing in HPC data services?

Image from M. Geurden, ñMarket Opportunity Identification: Push or Pull?,òJuly 2012,

https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/

Application pull:

Å Use of HPC in experimental

science (e.g., ATLAS/CMS)

Å Artificial intelligence use cases

Å Streaming data

Technology push:

ÅMore capable storage technologies

Å Compute in storage

Å New networking APIs and

capabilities

https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/
https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/

3

Mochi
Customized data services for DOE science

Mochi provides a toolkit for building high-
performance data services for use on HPC platforms,
and ECP computer scientists are using Mochi to
build services for ECP application teams.

Mochi is a multi-institution project including Argonne
National Laboratory, Carnegie Mellon University, the
HDF Group, and Los Alamos National Laboratory.

Who uses Mochi?

ðEnd users benefit from the specialization of these
services in terms of ease of use and performance.

ðComputer scientists use Mochi to develop
customized data services.

14

Mochi components and microservices

Whatôs new in the Mochi approach?
An ecosystem of services co-existing and reusing functionality

Particle

Simulation

(e.g. VPIC)

C code

Machine Learning

Ensemble

(e.g. CANDLE)

Python code

Analysis of

Experimental Data

(e.g. art Framework)

C++ code

small writes &
indexed queries

caching large,
write-once objects

bulk ingest &
iterative access

DeltaFS FlameStore HEPnOS

Mochi has been used to develop a
number of services, including ones to
store and index particle data, to manage
learning data, and to provide fast access
to high-energy physics detector data
during analysis.

Within ECP, Mochi is also helping enable
Unify, Chimbuko, DataSpaces, and
Proactive Data Containers.

4

Whatôs new in the Mochi approach?

Object API

Client
Memory

Object Provider

Application Process

Object Client

Object provider node

Application node

PMDK or
POSIX

Extent

Provider

Bake

Client

DB (e.g.,

LevelDB)

KV Client

KV Provider

KV Provider

Margo

Mercury Argobots
LevelDB

Berkeley

DB

3. Multiple methods of

programming (C, C++, Python),

more accessible.

4. Portable RPC communication

library designed for multi -

service environments

1. Core functionality

developed as stand -

alone components and

ñmicroservicesò, cleanly

reusable in different

configurations and

products.

2. Modularity eases

adaptation to new

hardware technologies.

5

Component Summary

Core

Argobots Argobots provides user-level thread capabilities for managing concurrency.

Mercury Mercury is a library implementing remote procedure calls (RPCs).

Margo Margo is a C library using Argobots to simplify building RPC-based services.

Thallium Thallium allows development of Mochi services using modern C++.

SSG SSG provides tools for managing groups of providers in Mochi.

Utilities

ABT-IO ABT-IO enables POSIX file access with the Mochi framework.

Bedrock Bedrock is a bootstrapping and configuration system for Mochi components.

ch_placement ch-placement is a library implementing multiple hashing algorithms.

MDCS MDCS exposes remotely accessible counters for monitoring purposes.

Shuffle Shuffle provides a scalable all-to-all data shuffling service.

Microservices

BAKE Bake enables remote storage and retrieval of named blobs of data.

POESIE Poesie embeds language interpreters in Mochi services.

REMI REMI is a microservice that handles migrating sets of files between nodes.

SDSKV SDSKV enables RPC-based access to multiple key-value backends.

SDSDKV SDSDKV provides a distributed key-value service using Mochi components.

Sonata Sonata is a Mochi service for JSON document storage based on UnQLite.

6

Agenda

2:30 ï 2:40 Welcome and Introductions Rob Ross

2:40 ï 2:55 Getting Started Phil Carns

2:55 ï 3:10 Composition and Configuration Matthieu Dorier

3:10 ï 3:25 Networking with Mercury Jerome Soumagne

3:25 ï 3:30 Wrap-up Rob Ross

Getting Started with Mochi
&

Recent Updates

8

Getting Started

ÅStart here for documentation:

ðhttps://mochi.readthedocs.io/en/latest/

ÅAdditional resources, including a mailing list and slack
space, can be found on the project web page:

ðhttps://www.mcs.anl.gov/research/projects/mochi/

ÅInstallation ñrecipesò are available for several popular ECP platforms

ðhttps://github.com/mochi-hpc-experiments/platform-configurations (spack
environment examples)

ðhttps://github.com/mochi-hpc-experiments/mochi-tests (performance
regression script examples)

ÅWe will be continuing to improve the first-time user experience
in upcoming deliverables

https://mochi.readthedocs.io/en/latest/
https://www.mcs.anl.gov/research/projects/mochi/
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/platform-configurations
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests
https://github.com/mochi-hpc-experiments/mochi-tests

9

Installing Mochi with Spack

ÅWe strongly recommend using Spack to install any Mochi components

ðStraightforward to do per-user installations without administrative privilege

ðComponent dependencies are handled automatically

ðOne unified yaml file expresses all preferred build settings
(e.g., network transport, compiler, storage backend) for a given platform

ðOur team maintains an external package repository that enables rapid integration of new releases

ÅSee https://mochi.readthedocs.io/en/latest/ for details

https://mochi.readthedocs.io/en/latest/

10

Mochi source code: now on GitHub!

ÅAll Mochi source code has been migrated to github.com
as of March 2021

ðhttps://github.com/mochi-hpc/

ðThe Mochi software is actually a collection of components maintained in separate repositories

ðBug reports and contributions are welcome! Please note the CLA policy for contributions.

ÅWere you already using Mochi prior to the migration?
Update your spack repository to refer to the new location.

ðhttps://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/

spack repo rm mochi

git clone https://github.com/mochi - hpc/mochi - spack - packages.git

spack repo add mochi - spack - packages

https://github.com/mochi-hpc/
https://github.com/mochi-hpc/
https://github.com/mochi-hpc/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://www.mcs.anl.gov/research/projects/mochi/2021/03/24/the-mochi-github-migration-is-complete/
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git
https://github.com/mochi-hpc/mochi-spack-packages.git

11

Performance diagnostics and profiling

ÅHow do you tune the performance of a Mochi service?

ðStep 1: Use the best (native) network transport for your platform

ðStep 2: Use Mochi diagnostic and profiling tools* to understand where
service time is spent

ÅBasic performance diagnostic and profiling capability built into any
Mochi service

ðNo need to modify or recompile application or service

ðAutomatically tracks Mochi RPCs

ðAutomatically tracks RPC dependencies

ð Includes intra-node, inter-node, and inter-process calls

* Functionality developed by Srinivasan Ramesh of U. Oregon, see:

SYMBIOSYS: A Methodology for Performance Analysis of Composable HPC Data Services
Srinivasan Ramesh, Allen D. Malony, Philip Carns, Robert B. Ross, Matthieu Dorier, Jerome
Soumagne, and Shane Snyder (to appear in IPDPS 2021)

